Line data Source code
1 : /*
2 : * Copyright (c) 2010-2015: G-CSC, Goethe University Frankfurt
3 : * Author: Andreas Vogel
4 : *
5 : * This file is part of UG4.
6 : *
7 : * UG4 is free software: you can redistribute it and/or modify it under the
8 : * terms of the GNU Lesser General Public License version 3 (as published by the
9 : * Free Software Foundation) with the following additional attribution
10 : * requirements (according to LGPL/GPL v3 §7):
11 : *
12 : * (1) The following notice must be displayed in the Appropriate Legal Notices
13 : * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
14 : *
15 : * (2) The following notice must be displayed at a prominent place in the
16 : * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
17 : *
18 : * (3) The following bibliography is recommended for citation and must be
19 : * preserved in all covered files:
20 : * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
21 : * parallel geometric multigrid solver on hierarchically distributed grids.
22 : * Computing and visualization in science 16, 4 (2013), 151-164"
23 : * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
24 : * flexible software system for simulating pde based models on high performance
25 : * computers. Computing and visualization in science 16, 4 (2013), 165-179"
26 : *
27 : * This program is distributed in the hope that it will be useful,
28 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 : * GNU Lesser General Public License for more details.
31 : */
32 :
33 : #ifndef __H__UG__LIB_DISC__QUADRATURE__
34 : #define __H__UG__LIB_DISC__QUADRATURE__
35 :
36 : #include "common/common.h"
37 : #include "common/math/ugmath.h"
38 :
39 : namespace ug{
40 :
41 : // Doxygen group
42 : ////////////////////////////////////////////////////////////////////////
43 : /**
44 : * \brief supply of quadrature rules.
45 : *
46 : * The Quadrature Rule section provides the user with several quadrature
47 : * rules for all reference elements.
48 : *
49 : * \defgroup lib_discretization_quadrature_rules Quadrature Rules
50 : * \ingroup lib_discretization
51 : */
52 :
53 : /// \addtogroup lib_discretization_quadrature_rules
54 : /// @{
55 :
56 : /// provides quadrature rule for a Reference Dimension
57 : /**
58 : * A Quadrature Rule provides for a given Reference Element integration points
59 : * and weights. An Integral over the Reference Element T is approximated by
60 : * \f[
61 : * \int\limits_T f(\mathbf{x}) \; d\mathbf{x} \approx \sum_{i=0}^{n-1}
62 : * f(\mathbf{x}_{i}) \cdot w_i
63 : * \f]
64 : * with the \f$n\f$ integration points \f$\mathbf{x}_i\f$ and weights
65 : * \f$ w_i \f$.
66 : *
67 : * \tparam TDim Dimension of Reference Element
68 : */
69 : template <int TDim>
70 : class QuadratureRule{
71 : public:
72 : /// Dimension of Reference Element
73 : static const int dim = TDim;
74 :
75 : /// Position Type in Reference Element Space
76 : typedef MathVector<dim> position_type;
77 :
78 : /// Type of weights
79 : typedef number weight_type;
80 :
81 : public:
82 : /// constructor
83 0 : QuadratureRule() :
84 0 : m_pvPoint(NULL), m_pvWeight(NULL),
85 0 : m_numPoints(0), m_order(0)
86 : {}
87 :
88 : /// destructor
89 0 : virtual ~QuadratureRule() {}
90 :
91 : /// number of integration points
92 0 : inline size_t size() const {return m_numPoints;}
93 :
94 : /// returns i'th integration point
95 : inline const MathVector<dim>& point(size_t i) const
96 : {
97 : UG_ASSERT(i < size(), "Wrong index");
98 0 : return m_pvPoint[i];
99 : }
100 :
101 : /// returns all positions in an array of size()
102 0 : inline const MathVector<dim>* points() const {return m_pvPoint;}
103 :
104 : /// return the i'th weight
105 : inline number weight(size_t i) const
106 : {
107 : UG_ASSERT(i < size(), "Wrong index");
108 0 : return m_pvWeight[i];
109 : }
110 :
111 : /// returns all weights in an array of size()
112 0 : inline const number* weights() const {return m_pvWeight;}
113 :
114 : /// returns the order
115 0 : inline size_t order() const {return m_order;}
116 :
117 : protected:
118 : const MathVector<dim>* m_pvPoint; ///< Integration points
119 : const number* m_pvWeight; ///< Weights
120 : size_t m_numPoints; ///< number of points
121 : int m_order; ///< Order of rule
122 : };
123 :
124 : /// @}
125 :
126 : } // namespace ug
127 :
128 : #endif /* __H__UG__LIB_DISC__QUADRATURE__ */
|