LCOV - code coverage report
Current view: top level - ugbase/lib_disc/local_finite_element/common - lagrange1d.h (source / functions) Coverage Total Hit
Test: coverage.info Lines: 100.0 % 46 46
Test Date: 2025-09-21 23:31:46 Functions: 100.0 % 6 6

            Line data    Source code
       1              : /*
       2              :  * Copyright (c) 2010-2015:  G-CSC, Goethe University Frankfurt
       3              :  * Author: Andreas Vogel
       4              :  * 
       5              :  * This file is part of UG4.
       6              :  * 
       7              :  * UG4 is free software: you can redistribute it and/or modify it under the
       8              :  * terms of the GNU Lesser General Public License version 3 (as published by the
       9              :  * Free Software Foundation) with the following additional attribution
      10              :  * requirements (according to LGPL/GPL v3 §7):
      11              :  * 
      12              :  * (1) The following notice must be displayed in the Appropriate Legal Notices
      13              :  * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
      14              :  * 
      15              :  * (2) The following notice must be displayed at a prominent place in the
      16              :  * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
      17              :  * 
      18              :  * (3) The following bibliography is recommended for citation and must be
      19              :  * preserved in all covered files:
      20              :  * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
      21              :  *   parallel geometric multigrid solver on hierarchically distributed grids.
      22              :  *   Computing and visualization in science 16, 4 (2013), 151-164"
      23              :  * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
      24              :  *   flexible software system for simulating pde based models on high performance
      25              :  *   computers. Computing and visualization in science 16, 4 (2013), 165-179"
      26              :  * 
      27              :  * This program is distributed in the hope that it will be useful,
      28              :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      29              :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
      30              :  * GNU Lesser General Public License for more details.
      31              :  */
      32              : 
      33              : #ifndef __H__UG__LIB_DISC__LOCAL_SHAPE_FUNCTION_SET__COMMON__LAGRANGE1D__
      34              : #define __H__UG__LIB_DISC__LOCAL_SHAPE_FUNCTION_SET__COMMON__LAGRANGE1D__
      35              : 
      36              : #include "./polynomial1d.h"
      37              : #include "common/math/ugmath.h"
      38              : #include <vector>
      39              : 
      40              : namespace ug{
      41              : 
      42              : /** Lagrange Polynomial for arbitrary points
      43              :  *
      44              :  */
      45              : class Lagrange1D
      46              :         : public Polynomial1D
      47              : {
      48              :         public:
      49              :         /**     constructor for lagrange polynomial i using interpolation points pos
      50              :          * This constructor creates a lagrange polynomial with interpolation points
      51              :          * given in pos for the i-th point, i.e. value(pos_i) == 1, value(pos_j) == 0
      52              :          * for j != i. Therefore, it must hold that 0 <= i < pos.size()
      53              :          */
      54              :                 Lagrange1D(const size_t i, const std::vector<number>& vPos)
      55              :                 {
      56              :                 //      compute coefficients
      57              :                         compute_coeffs(i, vPos);
      58              : 
      59              :                 //      remember positions
      60              :                         m_vPos = vPos;
      61              :                 }
      62              : 
      63              :         ///     returns the position of the i'th interpolation point
      64              :                 number position(const size_t i) const
      65              :                 {
      66              :                         UG_ASSERT(i < m_vPos.size(), "Invalid index");
      67              :                         return m_vPos[i];
      68              :                 }
      69              : 
      70              :         protected:
      71              :         /// computes the coefficients for passed interpolation points
      72              :                 void compute_coeffs(const size_t i, const std::vector<number>& vPos)
      73              :                 {
      74              :                 //      start coefficients
      75              :                         std::vector<number> vStart(1, 1.0);
      76              : 
      77              :                 //      start polynomial
      78              :                         this->set_coefficients(vStart);
      79              : 
      80              :                 //      help polynomial used for each factor
      81              :                         std::vector<number> vFactor(2,1.0);
      82              : 
      83              :                 //      scaling of polynom
      84              :                         number scale = 1.0;
      85              : 
      86              :                 //      fill coefficients
      87              :                         for(size_t j = 0; j < vPos.size(); ++j)
      88              :                         {
      89              :                                 if(j == i) continue;
      90              : 
      91              :                         //      set first coefficent to minus position
      92              :                                 vFactor[0] = -vPos[j];
      93              :                         //      create polynom for (-vPos, 1)
      94              :                                 Polynomial1D tmpPol(vFactor);
      95              :                         //      multiply
      96              :                                 (*this) *= tmpPol;
      97              :                         //      multiply scale
      98              :                                 scale *= 1./(vPos[i]-vPos[j]);
      99              :                         }
     100              : 
     101              :                 //      multiply by scale
     102              :                         (*this) *= scale;
     103              :                 }
     104              : 
     105              :         private:
     106              :                 std::vector<number> m_vPos;
     107              : };
     108              : 
     109              : /** EquiDistant Lagrange Function
     110              :  *
     111              :  */
     112           36 : class EquidistantLagrange1D
     113              :         : public Polynomial1D
     114              : {
     115              :         public:
     116              :         /** creates a lagrange polynomial with equidistant interpolation points
     117              :          * \param[in]   i               number of interpolation point, where polynom is 1
     118              :          * \param[in]   degree  degree of polynom
     119              :          */
     120           36 :                 EquidistantLagrange1D(const size_t i, const size_t degree)
     121              :                 {
     122              :                         UG_ASSERT(i <= degree, "Only #degree shape functions.");
     123           36 :                         compute_coeffs(i, degree);
     124           36 :                 }
     125              : 
     126              :         ///     returns the position of the i'th interpolation point
     127              :                 static number position(const size_t i, const size_t degree)
     128              :                 {
     129              :                         UG_ASSERT(i <= degree, "Invalid index");
     130          966 :                         return (number)i/(number)degree;
     131              :                 }
     132              : 
     133              :         protected:
     134              :         /// computes the coefficients for passed interpolation points
     135           36 :                 void compute_coeffs(const int i, const int p)
     136              :                 {
     137              :                 //      start coefficients
     138           36 :                         std::vector<number> vStart(1, 1.0);
     139              : 
     140              :                 //      start polynomial
     141           36 :                         this->set_coefficients(vStart);
     142              : 
     143              :                 //      help polynomial used for each factor
     144           36 :                         std::vector<number> vFactor(2, p);
     145              : 
     146              :                 //      scaling of polynom
     147              :                         number scale = 1.0;
     148              : 
     149              :                 //      fill coefficients
     150          152 :                         for(int j = 0; j <= p; ++j)
     151              :                         {
     152          116 :                                 if(j == i) continue;
     153              : 
     154              :                         //      set first coefficent to minus position
     155           80 :                                 vFactor[0] = -j;
     156              :                         //      create polynom for (-j, p)
     157           80 :                                 Polynomial1D tmpPol(vFactor);
     158              :                         //      multiply
     159           80 :                                 (*this) *= tmpPol;
     160              :                         //      multiply scale
     161           80 :                                 scale *= 1./(i-j);
     162              :                         }
     163              : 
     164              :                 //      multiply by scale
     165              :                         (*this) *= scale;
     166           36 :                 }
     167              : };
     168              : 
     169              : /** Truncated EquiDistant Lagrange Function
     170              :  *
     171              :  * Creates for given order <tt>p</tt> and iterpolation point <tt>i</tt> the
     172              :  * polynomial \f[ \prod_{j=0}^{i-1} \frac{x - \frac{j}{p}}{\frac{i}{p} -
     173              :  * \frac{j}{p}} \f]
     174              :  */
     175           27 : class TruncatedEquidistantLagrange1D
     176              :         : public Polynomial1D
     177              : {
     178              :         public:
     179              :         /** creates a lagrange polynomial with equidistant interpolation points
     180              :          * \param[in]   i               number of interpolation point, where polynom is 1
     181              :          * \param[in]   degree  degree of polynom
     182              :          */
     183           27 :                 TruncatedEquidistantLagrange1D(const size_t i, const size_t degree)
     184              :                 {
     185              :                         UG_ASSERT(i <= degree, "Only #degree shape functions.");
     186              : 
     187           27 :                         compute_coeffs(i, degree);
     188           27 :                 }
     189              : 
     190              :         ///     returns the position of the i'th interpolation point
     191              :                 static number position(const size_t i, const size_t degree)
     192              :                 {
     193              :                         UG_ASSERT(i <= degree, "Invalid index");
     194          578 :                         return (number)i/(number)degree;
     195              :                 }
     196              : 
     197              :         protected:
     198              :         /// computes the coefficients for passed interpolation points
     199           27 :                 void compute_coeffs(const int i, const int p)
     200              :                 {
     201              :                 //      start coefficients
     202           27 :                         std::vector<number> vStart(1, 1.0);
     203              : 
     204              :                 //      start polynomial
     205           27 :                         this->set_coefficients(vStart);
     206              : 
     207              :                 //      help polynomial used for each factor
     208           27 :                         std::vector<number> vFactor(2, p);
     209              : 
     210              :                 //      scaling of polynom
     211              :                         number scale = 1.0;
     212              : 
     213              :                 //      fill coefficients
     214           57 :                         for(int j = 0; j < i; ++j)
     215              :                         {
     216              :                         //      set first coefficent to minus position
     217           30 :                                 vFactor[0] = -j;
     218              :                         //      create polynom for (-j, p)
     219           30 :                                 Polynomial1D tmpPol(vFactor);
     220              :                         //      multiply
     221           30 :                                 (*this) *= tmpPol;
     222              :                         //      multiply scale
     223           30 :                                 scale *= 1./(i-j);
     224              :                         }
     225              : 
     226              :                 //      multiply by scale
     227              :                         (*this) *= scale;
     228           27 :                 }
     229              : };
     230              : 
     231              : /** Bounded EquiDistant Lagrange Function
     232              :  *
     233              :  * Creates for given order <tt>p</tt>, interpolation point <tt>i</tt> and upper
     234              :  * bound <tt>0 <= b <= p</tt> the polynomial
     235              :  * \f[ \prod_{\substack{j=0\\j\neq i}}^{b} \frac{x - \frac{j}{p}}{\frac{i}{p} -
     236              :  * \frac{j}{p}} \f]
     237              :  * Thus, it is a polynomial of order b.
     238              :  */
     239            3 : class BoundedEquidistantLagrange1D
     240              :         : public Polynomial1D
     241              : {
     242              :         public:
     243              :         /** creates a lagrange polynomial with equidistant interpolation points
     244              :          * \param[in]   i               number of interpolation point, where polynom is 1
     245              :          * \param[in]   degree  degree of polynom
     246              :          * \param[in]   bound   Point until lagrange points are included
     247              :          */
     248            3 :                 BoundedEquidistantLagrange1D(const size_t i, const size_t degree,
     249              :                                              const size_t bound)
     250              :                 {
     251              :                         UG_ASSERT(i <= bound, "Only #bound shape functions.");
     252              :                         UG_ASSERT(bound <= degree, "Only #bound shape functions.");
     253              : 
     254              :                 //      init coefficients
     255            3 :                         compute_coeffs(i, degree, bound);
     256            3 :                 }
     257              : 
     258              :         ///     returns the position of the i'th interpolation point
     259              :                 static number position(const size_t i, const size_t degree)
     260              :                 {
     261              :                         UG_ASSERT(i <= degree, "Invalid index");
     262              :                         return (number)i/(number)degree;
     263              :                 }
     264              : 
     265              :         protected:
     266              :         /// computes the coefficients for passed interpolation points
     267            3 :                 void compute_coeffs(const int i, const int p, const int b)
     268              :                 {
     269              :                 //      start coefficients
     270            3 :                         std::vector<number> vStart(1, 1.0);
     271              : 
     272              :                 //      start polynomial
     273            3 :                         this->set_coefficients(vStart);
     274              : 
     275              :                 //      help polynomial used for each factor
     276            3 :                         std::vector<number> vFactor(2, p);
     277              : 
     278              :                 //      scaling of polynom
     279              :                         number scale = 1.0;
     280              : 
     281              :                 //      fill coefficients
     282            8 :                         for(int j = 0; j <= b; ++j)
     283              :                         {
     284            5 :                                 if(j == i) continue;
     285              : 
     286              :                         //      set first coefficent to minus position
     287            2 :                                 vFactor[0] = -j;
     288              :                         //      create polynom for (-j, p)
     289            2 :                                 Polynomial1D tmpPol(vFactor);
     290              :                         //      multiply
     291            2 :                                 (*this) *= tmpPol;
     292              :                         //      multiply scale
     293            2 :                                 scale *= 1./(i-j);
     294              :                         }
     295              : 
     296              :                 //      multiply by scale
     297              :                         (*this) *= scale;
     298            3 :                 }
     299              : };
     300              : 
     301              : 
     302              : } // end namespace ug
     303              : 
     304              : #endif /* __H__UG__LIB_DISC__LOCAL_SHAPE_FUNCTION_SET__COMMON__LAGRANGE1D__ */
        

Generated by: LCOV version 2.0-1