LCOV - code coverage report
Current view: top level - ugbase/lib_algebra/operator/preconditioner/projected_gauss_seidel - proj_gauss_seidel_impl.h (source / functions) Coverage Total Hit
Test: coverage.info Lines: 0.0 % 29 0
Test Date: 2025-09-21 23:31:46 Functions: 0.0 % 33 0

            Line data    Source code
       1              : /*
       2              :  * Copyright (c) 2013-2015:  G-CSC, Goethe University Frankfurt
       3              :  * Author: Raphael Prohl
       4              :  * 
       5              :  * This file is part of UG4.
       6              :  * 
       7              :  * UG4 is free software: you can redistribute it and/or modify it under the
       8              :  * terms of the GNU Lesser General Public License version 3 (as published by the
       9              :  * Free Software Foundation) with the following additional attribution
      10              :  * requirements (according to LGPL/GPL v3 §7):
      11              :  * 
      12              :  * (1) The following notice must be displayed in the Appropriate Legal Notices
      13              :  * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
      14              :  * 
      15              :  * (2) The following notice must be displayed at a prominent place in the
      16              :  * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
      17              :  * 
      18              :  * (3) The following bibliography is recommended for citation and must be
      19              :  * preserved in all covered files:
      20              :  * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
      21              :  *   parallel geometric multigrid solver on hierarchically distributed grids.
      22              :  *   Computing and visualization in science 16, 4 (2013), 151-164"
      23              :  * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
      24              :  *   flexible software system for simulating pde based models on high performance
      25              :  *   computers. Computing and visualization in science 16, 4 (2013), 165-179"
      26              :  * 
      27              :  * This program is distributed in the hope that it will be useful,
      28              :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      29              :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
      30              :  * GNU Lesser General Public License for more details.
      31              :  */
      32              : 
      33              : #ifndef __H__UG__LIB_ALGEBRA__OPERATOR__PRECONDITIONER__PROJECTED_GAUSS_SEIDEL__PROJ_GAUSS_SEIDEL_IMPL__
      34              : #define __H__UG__LIB_ALGEBRA__OPERATOR__PRECONDITIONER__PROJECTED_GAUSS_SEIDEL__PROJ_GAUSS_SEIDEL_IMPL__
      35              : 
      36              : #include "proj_gauss_seidel.h"
      37              : 
      38              : namespace ug{
      39              : 
      40              : ///     commmon GaussSeidel-step-calls for a single index 'i'
      41              : template<typename Matrix_type, typename Vector_type>
      42            0 : void forward_gs_step(Vector_type& c, const Matrix_type& A, const Vector_type& d,
      43              :                 const size_t i, const number relaxFactor)
      44              : {
      45            0 :         typename Vector_type::value_type s = d[i];
      46              : 
      47              :         for(typename Matrix_type::const_row_iterator it = A.begin_row(i);
      48            0 :                         it != A.end_row(i) && it.index() < i; ++it)
      49              :                 // s -= it.value() * x[it.index()];
      50            0 :                 MatMultAdd(s, 1.0, s, -1.0, it.value(), c[it.index()]);
      51              : 
      52              :         //      c[i] = relaxFactor * s / A(i,i)
      53            0 :         InverseMatMult(c[i], relaxFactor, A(i,i), s);
      54            0 : }
      55              : 
      56              : template<typename Matrix_type, typename Vector_type>
      57            0 : void backward_gs_step(Vector_type& c, const Matrix_type& A, const Vector_type& d,
      58              :                 const size_t i, const number relaxFactor)
      59              : {
      60            0 :         typename Vector_type::value_type s = d[i];
      61              : 
      62              :         typename Matrix_type::const_row_iterator diag = A.get_connection(i, i);
      63              :         typename Matrix_type::const_row_iterator it = diag; ++it;
      64              : 
      65            0 :         for(; it != A.end_row(i); ++it)
      66              :                 // s -= it.value() * x[it.index()];
      67            0 :                 MatMultAdd(s, 1.0, s, -1.0, it.value(), c[it.index()]);
      68              : 
      69              :         // c[i] = relaxFactor * s/A(i,i)
      70              :         InverseMatMult(c[i], relaxFactor, diag.value(), s);
      71            0 : }
      72              : 
      73              : 
      74              : template <typename TDomain, typename TAlgebra>
      75              : void
      76            0 : ProjGaussSeidel<TDomain,TAlgebra>::
      77              : step(const matrix_type& A, vector_type& c, const vector_type& d, const number relax)
      78              : {
      79            0 :         for(size_t i = 0; i < c.size(); i++)
      80              :         {
      81            0 :                 forward_gs_step(c, A, d, i, relax);
      82              : 
      83              :                 //      project correction on the subspace defined by the obstacle constraints
      84            0 :                 this->project_correction(c[i], i);
      85              :         }
      86            0 : }
      87              : 
      88              : template <typename TDomain, typename TAlgebra>
      89              : void
      90            0 : ProjBackwardGaussSeidel<TDomain,TAlgebra>::
      91              : step(const matrix_type& A, vector_type& c, const vector_type& d, const number relax)
      92              : {
      93            0 :         if(c.size() == 0) return;
      94            0 :         size_t i = c.size()-1;
      95              :         do
      96              :         {
      97            0 :                 backward_gs_step(c, A, d, i, relax);
      98              : 
      99              :                 //      project correction on the subspace defined by the obstacle constraints
     100            0 :                 this->project_correction(c[i], i);
     101              : 
     102            0 :         } while(i-- != 0);
     103              : }
     104              : 
     105              : template <typename TDomain, typename TAlgebra>
     106              : void
     107            0 : ProjSymmetricGaussSeidel<TDomain,TAlgebra>::
     108              : step(const matrix_type& A, vector_type& c, const vector_type& d, const number relax)
     109              : {
     110            0 :         for(size_t i = 0; i < c.size(); i++)
     111              :         {
     112              :                 //      1. perform a forward GaussSeidel step
     113              :                 //      c1 = (D-L)^{-1} d
     114            0 :                 forward_gs_step(c, A, d, i, relax);
     115              : 
     116              :                 //      2. c2 = D c1
     117            0 :                 MatMult(c[i], 1.0, A(i, i), c[i]);
     118              : 
     119              :                 //      3. perform a backward GaussSeidel step
     120              :                 //      c3 = (D-U)^{-1} c2
     121            0 :                 backward_gs_step(c, A, c, i, relax);
     122              : 
     123              :                 //      project correction on the subspace defined by the obstacle constraints
     124            0 :                 this->project_correction(c[i], i);
     125              :         }
     126            0 : }
     127              : 
     128              : } // end namespace ug
     129              : 
     130              : #endif /* __H__UG__LIB_ALGEBRA__OPERATOR__PRECONDITIONER__PROJECTED_GAUSS_SEIDEL__PROJ_GAUSS_SEIDEL_IMPL__ */
        

Generated by: LCOV version 2.0-1