Line data Source code
1 : /*
2 : * Copyright (c) 2013-2015: G-CSC, Goethe University Frankfurt
3 : * Author: Martin Rupp
4 : *
5 : * This file is part of UG4.
6 : *
7 : * UG4 is free software: you can redistribute it and/or modify it under the
8 : * terms of the GNU Lesser General Public License version 3 (as published by the
9 : * Free Software Foundation) with the following additional attribution
10 : * requirements (according to LGPL/GPL v3 §7):
11 : *
12 : * (1) The following notice must be displayed in the Appropriate Legal Notices
13 : * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
14 : *
15 : * (2) The following notice must be displayed at a prominent place in the
16 : * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
17 : *
18 : * (3) The following bibliography is recommended for citation and must be
19 : * preserved in all covered files:
20 : * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
21 : * parallel geometric multigrid solver on hierarchically distributed grids.
22 : * Computing and visualization in science 16, 4 (2013), 151-164"
23 : * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
24 : * flexible software system for simulating pde based models on high performance
25 : * computers. Computing and visualization in science 16, 4 (2013), 165-179"
26 : *
27 : * This program is distributed in the hope that it will be useful,
28 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 : * GNU Lesser General Public License for more details.
31 : */
32 :
33 : #ifndef __UG__ADDITIONAL_MATH_H__
34 : #define __UG__ADDITIONAL_MATH_H__
35 :
36 : #include "smart_ptr_vector.h"
37 :
38 : #define PINVIT_PROFILE_FUNC() PROFILE_FUNC_GROUP("pinvit algebra")
39 : #define PINVIT_PROFILE_BEGIN(t) PROFILE_BEGIN_GROUP(t, "pinvit algebra")
40 : #define PINVIT_PROFILE_END() PROFILE_END()
41 :
42 : namespace ug{
43 :
44 : /*template<typename mat_type, typename vec_type, typename densematrix_type>
45 : void MultiEnergyProd(const SparseMatrix<mat_type> &A,
46 : Vector<vec_type> **x,
47 : DenseMatrix<densematrix_type> &rA, size_t n)
48 : {
49 : UG_ASSERT(n == rA.num_rows() && n == rA.num_cols(), "");
50 : vec_type Ai_xc;
51 : rA = 0.0;
52 : for(size_t i=0; i<A.num_rows(); i++)
53 : {
54 : for(size_t c=0; c<n; c++)
55 : {
56 : // Ai_xc = A[i] * x[c].
57 : Ai_xc = 0.0;
58 : A.mat_mult_add_row(i, Ai_xc, 1.0, (*x[c]));
59 : for(size_t r=0; r<n; r++)
60 : rA(c, r) += VecDot((*x[r])[i], Ai_xc);
61 : }
62 : }
63 : }*/
64 :
65 :
66 : inline bool absCompare(double a, double b)
67 : {
68 : return fabs(a) < fabs(b);
69 : }
70 :
71 :
72 :
73 : template<typename vector_type, typename densematrix_type>
74 : void MultiScalProd(vector_type &px,
75 : DenseMatrix<densematrix_type> &rA, size_t n)
76 : {
77 : PINVIT_PROFILE_FUNC();
78 : // UG_ASSERT(0, "");
79 : UG_ASSERT(n == rA.num_rows() && n == rA.num_cols(), "");
80 : for(size_t r=0; r<n; r++)
81 : for(size_t c=r; c<n; c++)
82 : rA(r, c) = px[c]->dotprod(*px[r]);
83 :
84 : for(size_t r=0; r<n; r++)
85 : for(size_t c=0; c<r; c++)
86 : rA(r,c) = rA(c, r);
87 : }
88 :
89 : template<typename matrix_type, typename vector_type>
90 0 : double EnergyProd(vector_type &v1, matrix_type &A, vector_type &v2, vector_type &tmp)
91 : {
92 : PINVIT_PROFILE_FUNC();
93 :
94 : #ifdef UG_PARALLEL
95 : pcl::ProcessCommunicator pc;
96 : v2.change_storage_type(PST_CONSISTENT);
97 : #endif
98 0 : A.apply(tmp, v2);
99 : // tmp is additive, v1 is consistent
100 : double a = v1.dotprod(tmp);
101 : //UG_LOG("EnergyProd " << a << "\n");
102 :
103 0 : return a;
104 : }
105 :
106 : template<typename matrix_type, typename vector_type>
107 : double EnergyProd(vector_type &v1, matrix_type &A, vector_type &v2)
108 : {
109 : vector_type t;
110 : CloneVector(t, v1);
111 : return EnergyProd(v1, A, v2, t);
112 : }
113 :
114 : template<typename matrix_type, typename vector_type>
115 : double EnergyNorm(vector_type &x, matrix_type &A, vector_type &tmp)
116 : {
117 : return sqrt( EnergyProd(x, A, x, tmp) );
118 : }
119 :
120 : template<typename matrix_type, typename vector_type>
121 0 : double EnergyNorm(vector_type &x, matrix_type &A)
122 : {
123 : vector_type tmp;
124 : CloneVector(tmp, x);
125 0 : return sqrt( EnergyProd(x, A, x, tmp) );
126 : }
127 :
128 :
129 : template<typename matrix_type, typename vector_type, typename densematrix_type>
130 : void MultiEnergyProd(matrix_type &A,
131 : SmartPtrVector<vector_type> &px,
132 : DenseMatrix<densematrix_type> &rA, size_t n)
133 : {
134 : PINVIT_PROFILE_FUNC();
135 : #ifdef UG_PARALLEL
136 : pcl::ProcessCommunicator pc;
137 : #endif
138 : UG_ASSERT(n == rA.num_rows() && n == rA.num_cols(), "");
139 : vector_type t;
140 :
141 : #if 0
142 : CloneVector(t, px(0));
143 :
144 : for(size_t r=0; r<n; r++)
145 : {
146 : // t.set(0.0);
147 : #ifdef UG_PARALLEL
148 : px(r).change_storage_type(PST_CONSISTENT);
149 : #endif
150 : A.apply(t, px(r));
151 : // tmp is additive, v1 is consistent
152 : //UG_LOG("EnergyProd " << a << "\n");
153 : for(size_t c=r; c<n; c++)
154 : {
155 : double a = px(c).dotprod(t);
156 : rA(c, r) = rA(r, c) = a; //EnergyProd(px(r), A, px(c), t);
157 : }
158 : }
159 :
160 : #else
161 : CloneVector(t, *px[0]);
162 :
163 : #ifdef UG_PARALLEL
164 : for(size_t r=0; r<n; r++)
165 : px[r]->change_storage_type(PST_CONSISTENT);
166 : #endif
167 :
168 : for(size_t r=0; r<n; r++)
169 : {
170 : // todo: why is SparseMatrix<T>::apply not const ?!?
171 : A.apply(t, *px[r]);
172 : // t additive
173 :
174 : for(size_t c=r; c<n; c++)
175 : rA(c, r) = rA(r, c) = px[c]->dotprod(t);
176 : }
177 :
178 : #endif
179 : }
180 :
181 :
182 : template<typename tvector>
183 : void PrintStorageType(const tvector &v)
184 : {
185 : #ifdef UG_PARALLEL
186 : if(v.has_storage_type(PST_UNDEFINED))
187 : UG_LOG("PST_UNDEFINED ");
188 : if(v.has_storage_type(PST_CONSISTENT))
189 : UG_LOG("PST_CONSISTENT ");
190 : if(v.has_storage_type(PST_ADDITIVE))
191 : UG_LOG("PST_ADDITIVE ");
192 : if(v.has_storage_type(PST_UNIQUE))
193 : UG_LOG("PST_UNIQUE ");
194 : #else
195 : UG_LOG("serial ");
196 : #endif
197 : }
198 :
199 :
200 : template<typename matrix_type>
201 0 : void PrintMatrix(const matrix_type &mat, const char *name)
202 : {
203 0 : UG_LOG(name << ":\n" << name << " := matrix([\n");
204 0 : for(size_t r=0; r<mat.num_rows(); r++)
205 : {
206 : UG_LOG("[");
207 0 : for(size_t c=0; c<mat.num_cols(); c++)
208 : {
209 0 : UG_LOG(mat(r, c));
210 0 : if(c < mat.num_cols()-1) UG_LOG(",\t");
211 : }
212 : UG_LOG("]\n");
213 : }
214 : UG_LOG("]);\n");
215 :
216 0 : }
217 :
218 : template<typename matrix_type>
219 : void PrintMaple(const matrix_type &mat, const char *name)
220 : {
221 : UG_LOG(name << ":\n" << name << " := matrix([");
222 : for(size_t r=0; r<mat.num_rows(); r++)
223 : {
224 : UG_LOG("[");
225 : for(size_t c=0; c<mat.num_cols(); c++)
226 : {
227 : UG_LOG(mat(r, c));
228 : if(c < mat.num_cols()-1) UG_LOG(", ");
229 : }
230 : UG_LOG("]");
231 : if(r < mat.num_rows()-1) UG_LOG(", ");
232 : }
233 : UG_LOG("]);\n");
234 : UG_LOG("(" << mat.num_rows() << " x " << mat.num_cols() << ")\n");
235 :
236 : }
237 :
238 : template<typename T>
239 : void MemSwap(T &a, T &b)
240 : {
241 : char c[sizeof(T)];
242 : memcpy(c, &a, sizeof(T));
243 : memcpy(&a, &b, sizeof(T));
244 : memcpy(&b, c, sizeof(T));
245 : }
246 :
247 : } // namespace ug
248 :
249 : #endif /* __UG__ADDITIONAL_MATH_H__ */
|