LCOV - code coverage report
Current view: top level - ugbase/lib_algebra/common/operations_mat - matrix_use_row_functions.h (source / functions) Coverage Total Hit
Test: coverage.info Lines: 0.0 % 5 0
Test Date: 2025-09-21 23:31:46 Functions: 0.0 % 3 0

            Line data    Source code
       1              : /*
       2              :  * Copyright (c) 2011-2012:  G-CSC, Goethe University Frankfurt
       3              :  * Author: Martin Rupp
       4              :  * 
       5              :  * This file is part of UG4.
       6              :  * 
       7              :  * UG4 is free software: you can redistribute it and/or modify it under the
       8              :  * terms of the GNU Lesser General Public License version 3 (as published by the
       9              :  * Free Software Foundation) with the following additional attribution
      10              :  * requirements (according to LGPL/GPL v3 §7):
      11              :  * 
      12              :  * (1) The following notice must be displayed in the Appropriate Legal Notices
      13              :  * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
      14              :  * 
      15              :  * (2) The following notice must be displayed at a prominent place in the
      16              :  * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
      17              :  * 
      18              :  * (3) The following bibliography is recommended for citation and must be
      19              :  * preserved in all covered files:
      20              :  * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
      21              :  *   parallel geometric multigrid solver on hierarchically distributed grids.
      22              :  *   Computing and visualization in science 16, 4 (2013), 151-164"
      23              :  * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
      24              :  *   flexible software system for simulating pde based models on high performance
      25              :  *   computers. Computing and visualization in science 16, 4 (2013), 165-179"
      26              :  * 
      27              :  * This program is distributed in the hope that it will be useful,
      28              :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      29              :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
      30              :  * GNU Lesser General Public License for more details.
      31              :  */
      32              : 
      33              : #include "../operations_vec.h"
      34              : namespace ug
      35              : {
      36              : // MATRIX_USE_ROW_FUNCTIONS
      37              : ///////////////////////////////////////////////////////////////////////////////////////////////////
      38              : 
      39              : template<typename vector_t, typename matrix_t>
      40              : struct mat_operations_class<vector_t, matrix_t, MATRIX_USE_ROW_FUNCTIONS>
      41              : {
      42              :         //! calculates dest = beta1 * A1;
      43            0 :         static inline bool MatMult(vector_t &dest,
      44              :                         const number &beta1, const matrix_t &A1, const vector_t &w1)
      45              :         {
      46            0 :                 for(size_t i=0; i<dest.size(); i++)
      47              :                 {
      48            0 :                         dest[i] = 0.0;
      49            0 :                         A1.mat_mult_add_row(i, dest[i], beta1, w1);
      50              :                 }
      51            0 :                 return true;
      52              :         }
      53              : 
      54              :         //! calculates dest = alpha1*v1 + beta1 * A1 *w1;
      55              :         static inline bool MatMultAdd(vector_t &dest,
      56              :                         const number &alpha1, const vector_t &v1,
      57              :                         const number &beta1, const matrix_t &A1, const vector_t &w1)
      58              :         {
      59              :                 for(size_t i=0; i<dest.size(); i++)
      60              :                 {
      61              :                         VecScaleAssign(dest[i], alpha1, v1[i]);
      62              :                         A1.mat_mult_add_row(i, dest[i], beta1, w1);
      63              :                 }
      64              :                 return true;
      65              :         }
      66              : 
      67              :         //! calculates dest = alpha1*v1 + alpha2*v2 + beta1 * A1 *w1;
      68              :         static inline bool MatMultAdd(vector_t &dest,
      69              :                         const number &alpha1, const vector_t &v1,
      70              :                         const number &alpha2, const vector_t &v2,
      71              :                         const number &beta1, const matrix_t &A1, const vector_t &w1)
      72              :         {
      73              :                 for(size_t i=0; i<dest.size(); i++)
      74              :                 {
      75              :                         VecScaleAdd(dest[i], alpha1, v1[i], alpha2, v2[i]);
      76              :                         A1.cast().mat_mult_add_row(i, dest[i], beta1, w1);
      77              :                 }
      78              :                 return true;
      79              :         }
      80              : 
      81              : 
      82              :         //! calculates dest = beta1 * A1 *w1 + beta2 * A2*w2;
      83              :         static inline bool MatMultAdd(vector_t &dest,
      84              :                         const number &beta1, const matrix_t &A1, const vector_t &w1,
      85              :                         const number &beta2, const matrix_t &A2, const vector_t &w2)
      86              :         {
      87              :                 for(size_t i=0; i<dest.size(); i++)
      88              :                 {
      89              :                         dest[i] = 0.0;
      90              :                         A1.cast().mat_mult_add_row(i, dest[i], beta1, w1);
      91              :                         A2.cast().mat_mult_add_row(i, dest[i], beta2, w2);
      92              :                 }
      93              :                 return true;
      94              :         }
      95              : 
      96              : 
      97              :         //! calculates dest = beta1 * A1 *w1 + beta2 * A2*w2 + alpha1*v1;
      98              :         static inline bool MatMultAdd(vector_t &dest,
      99              :                         const number &alpha1, const vector_t &v1,
     100              :                         const number &beta1, const matrix_t &A1, const vector_t &w1,
     101              :                         const number &beta2, const matrix_t &A2, const vector_t &w2)
     102              :         {
     103              :                 for(size_t i=0; i<dest.size(); i++)
     104              :                 {
     105              :                         VecScaleAssign(dest[i], alpha1, v1[i]);
     106              :                         A1.cast().mat_mult_add_row(i, dest[i], beta1, w1);
     107              :                         A2.cast().mat_mult_add_row(i, dest[i], beta2, w2);
     108              :                 }
     109              :                 return true;
     110              :         }
     111              : 
     112              :         //! calculates dest = beta1 * A1^T *w1;
     113              :         static inline bool MatMultTransposed(vector_t &dest,
     114              :                         const number &beta1, const matrix_t &A1, const vector_t &w1)
     115              :         {
     116              :                 return MatMultTransposed(dest, beta1, A1, w1);
     117              :         }
     118              : 
     119              :         //! calculates dest = alpha1*v1 + beta1 * A1^T *w1;
     120              :         static inline bool MatMultTransposedAdd(vector_t &dest,
     121              :                         const number &alpha1, const vector_t &v1,
     122              :                         const number &beta1, const matrix_t &A1, const vector_t &w1)
     123              :         {
     124              :                 return MatMultTransposedAddDirect(dest, beta1, A1, w1, alpha1, w1);
     125              :         }
     126              : };
     127              : }
        

Generated by: LCOV version 2.0-1