LCOV - code coverage report
Current view: top level - ugbase/common/math/misc - orthopoly.cpp (source / functions) Coverage Total Hit
Test: coverage.info Lines: 0.0 % 25 0
Test Date: 2025-09-21 23:31:46 Functions: 0.0 % 9 0

            Line data    Source code
       1              : /*
       2              :  * Copyright (c) 2009-2015:  G-CSC, Goethe University Frankfurt
       3              :  * Author: Dmitry Logashenko
       4              :  * 
       5              :  * This file is part of UG4.
       6              :  * 
       7              :  * UG4 is free software: you can redistribute it and/or modify it under the
       8              :  * terms of the GNU Lesser General Public License version 3 (as published by the
       9              :  * Free Software Foundation) with the following additional attribution
      10              :  * requirements (according to LGPL/GPL v3 §7):
      11              :  * 
      12              :  * (1) The following notice must be displayed in the Appropriate Legal Notices
      13              :  * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
      14              :  * 
      15              :  * (2) The following notice must be displayed at a prominent place in the
      16              :  * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
      17              :  * 
      18              :  * (3) The following bibliography is recommended for citation and must be
      19              :  * preserved in all covered files:
      20              :  * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
      21              :  *   parallel geometric multigrid solver on hierarchically distributed grids.
      22              :  *   Computing and visualization in science 16, 4 (2013), 151-164"
      23              :  * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
      24              :  *   flexible software system for simulating pde based models on high performance
      25              :  *   computers. Computing and visualization in science 16, 4 (2013), 165-179"
      26              :  * 
      27              :  * This program is distributed in the hope that it will be useful,
      28              :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      29              :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
      30              :  * GNU Lesser General Public License for more details.
      31              :  */
      32              : #include <cmath>
      33              : #include "math_constants.h"
      34              : // own header
      35              : #include "orthopoly.h"
      36              : 
      37              : namespace ug
      38              : {
      39              : 
      40              : /** returns the values of the Legendre polynomials
      41              :  *
      42              :  * The polynomials are \f$L_2\f$-orthogonal on \f$[-1, 1]\f$. They satisfy
      43              :  * the recursion \f$P_0 (x) = 1\f$, \f$P_1 (1) = x\f$,
      44              :  * \f$P_k (x) = ((2 k - 1) x P_{k-1} (x) - (k - 1) P_{k-2} (x)) / k\f$.
      45              :  * The \f$L_2\f$-norm of \f$P_k\f$ is \f$\sqrt {2 / (2 k + 1)}\f$.
      46              :  */
      47            0 : number LegendrePoly
      48              : (
      49              :         size_t k, ///< index of the polynomial, \f$k \ge 0\f$
      50              :         number x ///< argument of the polynomial
      51              : )
      52              : {
      53            0 :         if (k == 0) return 1;
      54            0 :         else if (k == 1) return x;
      55              :         
      56            0 :         return ((2 * k - 1) * x * LegendrePoly (k-1, x) - (k - 1) * LegendrePoly (k - 2, x)) / k;
      57              : }
      58              : 
      59              : /** returns the scalar square of the Legendre polynomials (the squared weighted norm)
      60              :  *
      61              :  * The polynomials are \f$L_2\f$-orthogonal on \f$[-1, 1]\f$. They satisfy
      62              :  * the recursion \f$P_0 (x) = 1\f$, \f$P_1 (1) = x\f$,
      63              :  * \f$P_k (x) = ((2 k - 1) x P_{k-1} (x) - (k - 1) P_{k-2} (x)) / k\f$.
      64              :  * The \f$L_2\f$-square of \f$P_k\f$ is \f$2 / (2 k + 1)\f$.
      65              :  * Note that this function returns not the \f$L_2\f$ norm but the weighted
      66              :  * norm \f$\sqrt {\frac{1}{b-a} \int_a^b P_k^2 (x) \, dx}\f$, where
      67              :  * \f$a=-1\f$, \f$b=1\f$.
      68              :  */
      69            0 : number SqNormOfLegendrePoly
      70              : (
      71              :         size_t k ///< index of the polynomial, \f$k \ge 0\f$
      72              : )
      73              : {
      74            0 :         return (number) 1 / (2 * k + 1);
      75              : }
      76              : 
      77              : /** returns the values of the normalized Legendre polynomials
      78              :  *
      79              :  * The Legendre polynomials are \f$L_2\f$-orthogonal on \f$[-1, 1]\f$.
      80              :  * They satisfy the recursion \f$P_0 (x) = 1\f$, \f$P_1 (1) = x\f$,
      81              :  * \f$(n+1) P_k (x) = (2 k - 1) x P_{k-1} (x) - (k - 1) P_{n-2} (x)\f$.
      82              :  * The \f$L_2\f$-norm of \f$P_k\f$ is \f$\sqrt {2 / (2 k + 1)}\f$.
      83              :  * This function returns \f$\sqrt {(2 k + 1) / 2} P_k (x)\f$.
      84              :  */
      85            0 : number NormalizedLegendrePoly
      86              : (
      87              :         size_t k, ///< index of the polynomial, \f$k \ge 0\f$
      88              :         number x ///< argument of the polynomial
      89              : )
      90              : {
      91            0 :         return sqrt (((number) (2 * k + 1))) * LegendrePoly (k, x);
      92              : }
      93              : 
      94              : /** returns the values of the Chebyshev polynomials of the first kind
      95              :  *
      96              :  * The polynomials are orthogonal on \f$[-1, 1]\f$ w.r.t. the scalar product
      97              :  * \f$ \int_{-1}^1 \phi (x) \cdot \psi (x) \frac{1}{\sqrt {1 - x^2}} \, dx \f$
      98              :  * They satisfy the recursion \f$T_0 (x) = 1\f$, \f$T_1 (1) = x\f$,
      99              :  * \f$T_k (x) = 2 x P_{k-1} (x) - P_{k-2} (x)\f$.
     100              :  * The corresponding norm of \f$T_k\f$ is \f$\tfrac{\pi}{2}\f$ for \f$k > 0\f$
     101              :  * and \f$\pi\f$ for \f$k = 0\f$.
     102              :  */
     103            0 : number Chebyshev1Poly
     104              : (
     105              :         size_t k, ///< index of the polynomial, \f$k \ge 0\f$
     106              :         number x ///< argument of the polynomial
     107              : )
     108              : {
     109            0 :         if (k == 0) return 1;
     110            0 :         else if (k == 1) return x;
     111              :         
     112            0 :         return 2 * x * Chebyshev1Poly (k-1, x) - Chebyshev1Poly (k - 2, x);
     113              : }
     114              : 
     115              : /** returns the scalar square of the Chebyshev polynomials of the first kind (the squared norm)
     116              :  *
     117              :  * The polynomials are orthogonal on \f$[-1, 1]\f$ w.r.t. the scalar product
     118              :  * \f$ \int_{-1}^1 \phi (x) \cdot \psi (x) \frac{1}{\sqrt {1 - x^2}} \, dx \f$
     119              :  * They satisfy the recursion \f$T_0 (x) = 1\f$, \f$T_1 (1) = x\f$,
     120              :  * \f$T_k (x) = 2 x P_{k-1} (x) - P_{k-2} (x)\f$.
     121              :  * The corresponding norm of \f$T_k\f$ is \f$\tfrac{\pi}{2}\f$ for \f$k > 0\f$
     122              :  * and \f$\pi\f$ for \f$k = 0\f$.
     123              :  */
     124            0 : number SqNormOfChebyshev1Poly
     125              : (
     126              :         size_t k ///< index of the polynomial, \f$k \ge 0\f$
     127              : )
     128              : {
     129            0 :         if (k == 0) return PI * PI;
     130              :         return PI * PI / 4;
     131              : }
     132              : 
     133              : /** returns the values the normalized Chebyshev polynomials of the first kind
     134              :  *
     135              :  * The polynomials are orthogonal on \f$[-1, 1]\f$ w.r.t. the scalar product
     136              :  * \f$ \int_{-1}^1 \phi (x) \cdot \psi (x) \frac{1}{\sqrt {1 - x^2}} \, dx \f$
     137              :  * They satisfy the recursion \f$T_0 (x) = 1\f$, \f$T_1 (1) = x\f$,
     138              :  * \f$T_k (x) = 2 x T_{k-1} (x) - T_{k-2} (x)\f$.
     139              :  * The corresponding norm of \f$T_k\f$ is \f$\tfrac{\pi}{2}\f$ for \f$k > 0\f$
     140              :  * and \f$\pi\f$ for \f$k = 0\f$.
     141              :  *
     142              :  * This function returns \f$T_k (x)\f$ divided by its norm.
     143              :  */
     144            0 : number NormalizedChebyshev1Poly
     145              : (
     146              :         size_t k, ///< index of the polynomial, \f$k \ge 0\f$
     147              :         number x ///< argument of the polynomial
     148              : )
     149              : {
     150            0 :         if (k == 0) return Chebyshev1Poly (0, x) / PI;
     151              :         
     152            0 :         return Chebyshev1Poly (k, x) * 2 / PI;
     153              : }
     154              : 
     155              : /** returns the values of the Chebyshev polynomials of the second kind
     156              :  *
     157              :  * The polynomials are orthogonal on \f$[-1, 1]\f$ w.r.t. the scalar product
     158              :  * \f$ \int_{-1}^1 \phi (x) \cdot \psi (x) \sqrt {1 - x^2} \, dx \f$
     159              :  * They satisfy the recursion \f$U_0 (x) = 1\f$, \f$U_1 (1) = 2 x\f$,
     160              :  * \f$U_k (x) = 2 x U_{k-1} (x) - U_{k-2} (x)\f$.
     161              :  * The corresponding norm of \f$T_k\f$ is \f$\tfrac{\pi}{2}\f$.
     162              :  */
     163            0 : number Chebyshev2Poly
     164              : (
     165              :         size_t k, ///< index of the polynomial, \f$k \ge 0\f$
     166              :         number x ///< argument of the polynomial
     167              : )
     168              : {
     169            0 :         if (k == 0) return 1;
     170            0 :         else if (k == 1) return 2 * x;
     171              :         
     172            0 :         return 2 * x * Chebyshev2Poly (k-1, x) - Chebyshev2Poly (k - 2, x);
     173              : }
     174              : 
     175              : /** returns the scalar square of the Chebyshev polynomials of the second kind (the squared norm)
     176              :  *
     177              :  * The polynomials are orthogonal on \f$[-1, 1]\f$ w.r.t. the scalar product
     178              :  * \f$ \int_{-1}^1 \phi (x) \cdot \psi (x) \sqrt {1 - x^2} \, dx \f$
     179              :  * They satisfy the recursion \f$U_0 (x) = 1\f$, \f$U_1 (1) = 2 x\f$,
     180              :  * \f$U_k (x) = 2 x U_{k-1} (x) - U_{k-2} (x)\f$.
     181              :  * The corresponding norm of \f$T_k\f$ is \f$\tfrac{\pi}{2}\f$.
     182              :  */
     183            0 : number SqNormOfChebyshev2Poly
     184              : (
     185              :         size_t k ///< index of the polynomial, \f$k \ge 0\f$
     186              : )
     187              : {
     188            0 :         return PI * PI / 4;
     189              : }
     190              : 
     191              : /** returns the values the normalized Chebyshev polynomials of the second kind
     192              :  *
     193              :  * The polynomials are orthogonal on \f$[-1, 1]\f$ w.r.t. the scalar product
     194              :  * \f$ \int_{-1}^1 \phi (x) \cdot \psi (x) \sqrt {1 - x^2} \, dx \f$
     195              :  * They satisfy the recursion \f$U_0 (x) = 1\f$, \f$U_1 (1) = 2 x\f$,
     196              :  * \f$U_k (x) = 2 x U_{k-1} (x) - U_{k-2} (x)\f$.
     197              :  * The corresponding norm of \f$T_k\f$ is \f$\tfrac{\pi}{2}\f$.
     198              :  */
     199            0 : number NormalizedChebyshev2Poly
     200              : (
     201              :         size_t k, ///< index of the polynomial, \f$k \ge 0\f$
     202              :         number x ///< argument of the polynomial
     203              : )
     204              : {
     205            0 :         return Chebyshev2Poly (k, x) * 2 / PI;
     206              : }
     207              : 
     208              : } // namespace ug
     209              : 
     210              : /* End of File */
        

Generated by: LCOV version 2.0-1